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Volatility in Home Sales and Prices: Supply or
Demand? ∗

Elliot Anenberg† Daniel Ringo‡

June 21, 2022

Abstract

We use a housing search model and data on individual home listings to
decompose fluctuations in home sales and price growth into supply or demand
factors. Simulations of the estimated model show that housing demand drives
short-run fluctuations in home sales and prices, while variation in supply plays
only a limited role. We consider two implications of these results. First, we
show that reduction of supply was a minor factor relative to increased demand
in the tightening of housing markets during COVID-19. New for-sale listings
would have had to expand 30 percent to keep the rate of price growth at pre-
pandemic levels given the pandemic-era surge in demand. Second, we estimate
that housing demand is very sensitive to changes in mortgage rates, even more
so than comparable estimates for home sales. This suggests that policies that
affect housing demand through mortgage rates can influence housing market
dynamics.

∗The analysis and conclusions set forth are those of the authors and do not indicate concurrence
by other members of the research staff or the Board of Governors.
†Board of Governors of the Federal Reserve System
‡Board of Governors of the Federal Reserve System
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1 Introduction

Both home sales and home price growth are volatile and cyclical, generally rising
together during booms and falling during busts. These fluctuations have important
implications for economic activity, financial stability, and access to homeownership.1

They are also frequent targets of policy making, as governments have a variety of
policy options that can affect the demand for homes (e.g. first-time home buyer
tax credits, mortgage subsidies, monetary policy) or the supply of homes available
for sale (e.g. zoning reform, tax assessment restrictions, transfer taxes). To predict
the outcomes of these policy choices, it is therefore important to understand the
determinants of housing market volatility. The main objective of this paper is to
estimate the extent to which short-run fluctuations in sales and price growth are
driven by the demand for homes, or by the supply of homes for sale.

To decompose these fluctuations into supply or demand factors, we use a sim-
ple model in which the stock of active buyers and sellers produce market dynamics
through a frictional housing search process. Our housing search model is motivated
by Figures 1 and 2, which show that changes in home sales and prices are accom-
panied by changes in housing liquidity. Figure 1 shows that homes take longer to
sell (i.e. a low rate of sale hazard) when the the stock of active sellers is high, and
Figure 2 shows that the average time on market of for-sale homes is strongly nega-
tively associated with home price growth. These correlations suggest an important
role for market tightness, or the ratio of buyers to sellers, in explaining short-run
housing dynamics. We therefore take the number of newly active sellers and buyers
entering the market as the fundamental measures of demand and supply we will be
investigating.2 These inflows, balanced with the outflows due to successful matches
and discouraged searchers, determine the market tightness in equilibrium.

An important empirical challenge is that we do not have data on the number
of potential buyers actively searching for a home. Sellers advertise for-sale homes
to buyers through platforms such as the multiple listings service (MLS), but active
buyers generally do not record their presence or search activity. Consequently, we

1For home prices and economic activity, see Aladangady (2017); Berger et al. (2017); Guren
et al. (2021); Mian and Sufi (2011); Mian, Rao and Sufi (2013). For home sales, see Benmelech,
Guren and Melzer (forthcoming); Karahan and Rhee (2019); Ortalo-Magne and Rady (2006).

2Newly active sellers include both builders of new construction and sellers of existing homes,
with the latter typically accounting for a large majority of newly active sellers.
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obtain data on the inflow of new listings for sale, the stock of active sellers, and
the sale hazard rate from the United States MLS, and we use our model structure
combined with these MLS data to estimate housing demand.

Using the model and estimates of housing demand, we consider simulations where
we hold fixed either supply or demand, and allow the other to vary as in the data.
We find that fluctuations in housing demand explain much more of the variation in
home sales and price growth than do fluctuations in housing supply. In our preferred
paramaterization, fluctuations in demand explain essentially all of the variation in
home sales, and 80% of the variation in prices, between 2002-2021. In other para-
materizations, demand can be forced to play a somewhat less important role, but its
strong contribution relative to supply is a robust result.

We then consider two implications of the results from our model. First, we show
that the COVID-19 housing boom in the U.S. was driven by an increase in demand.
Even though the supply of new for-sale listings fell sharply at the beginning of the
pandemic, we show that reduction of supply was a minor factor relative to increased
demand in explaining the tightening of housing markets over the first year of the
pandemic. A policy concern during the pandemic has been that the sharp rise in
house prices has exacerbated affordability pressures and increased financial stability
risks. We use our model to estimate how much additional supply would be needed to
offset the observed increase in demand so that house prices continued along their pre-
pandemic trend, instead of accelerating. We find that a 30% increase in the monthly
number of homes coming on to the market would have been necessary to keep up
with the pandemic-era surge in demand. Since new construction typically accounts
for about 15% of supply, our estimates imply that new construction would have had
to increase by roughly 300% to absorb the pandemic-era surge in demand. This is
a very large, unrealistic impulse to housing supply in the short-run, suggesting that
policies aimed at reducing bottlenecks to new construction would have done little to
cool the housing market during COVID-19.3

Second, we show that our estimate of housing demand is very mortgage rate
elastic. We estimate that a one percentage point increase in the mortgage rate lowers
housing demand by 10.4 percent. This is a larger demand sensitivity to rates than
evidence using purely observable housing market variables suggests. In particular,

3In the long run, increasing new construction may be a more effective policy response. Longer
run fluctuations in the housing market are beyond the scope of this paper.
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higher mortgage rates also decrease home sales, but the semi-elasticity is 6, or about
one-half the semi-elasticity for housing demand. Because search frictions effectively
smooth the response of home sales to demand shocks over time, estimates of the short-
term elasticity of home sales obscure some of the mortgage rate sensitivity of demand.
A high mortgage rate sensitivity of demand combined with our main result showing
that short-run housing market fluctuations are largely explained by demand suggest
that policies that target mortgage rates are an effective way to influence short-run
fluctuations in the housing market.

Our paper is related to a large literature that takes a search-theoretic approach
to modeling the dynamics of the housing market. Han and Strange (2015) provide a
summary of this literature. Within this literature, Ngai and Sheedy (2020) (hence-
forth NS) is most closely related to our paper. Using data from the U.S., NS find
that variation in the supply of homes for sale explains essentially all of the volatility
in sales volume, whereas we find that supply has very little explanatory power for
volatility in sales volume.

In Section 6, we show that our results differ from NS for two reasons. First, we
make different assumptions about how supply affects the sale hazard rate. In NS, the
stock of active listings for sale does not affect the sale hazard rate. In our model the
sale hazard depends on the market tightness, meaning it varies endogenously with
housing supply. As supply increases (all else equal), the sale hazard goes down and
offsets much of the effect of increased supply on sales volume. Our results highlight
the importance of modeling market tightness, and its implications for the matching
process, when evaluating the relative roles of demand and supply. Second, we use
micro data on individual listings that allow us to directly measure supply – i.e. the
inflow of new listings for sale. NS use aggregate data and as a result of data limi-
tations, their measure of supply is actually new listings net of withdrawals. Because
withdrawals are negatively correlated with demand, the NS measure of supply is in-
fluenced by demand factors, causing their estimates to overstate the contribution of
supply to volatility in sales volumes.4

Our model of random housing search is similar to a number of models in the
literature – see, for example, Diaz and Jerez (2013), Guren and McQuade (2020),

4Withdrawals are negatively correlated with demand because sellers often become discouraged
after failing to find a buyer for an extended period of time. For additional evidence on the counter-
cylicality of withdrawals, see Carrillo and Williams (2019).
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Krainer (2001), Novy-Marx (2009), Piazzesi and Schneider (2009), Gabrovski and
Ortego-Marti (2019). Our contribution, building on Anenberg and Ringo (2021), is
to show that this simple model of housing search combined with time-series data
on new listings, for-sale inventory, and withdrawals can be used to estimate housing
demand.5 We use this estimate of buyer demand along with our data and model to
provide new results on the contribution of supply and demand to volatility in the
housing market.

Our finding that demand is important for explaining variation in sales volume is
consistent with and related to a number of recent papers providing quasi-experimental
evidence that sales volumes are sensitive to demand stimulus. Bhutta and Ringo
(2020) and Anenberg and Ringo (Forthcoming) find that changes in mortgage rates
have important effects on home sales. Berger, Turner and Zwick (2020) find that
a national first-time homebuyer tax credit, a similarly demand-side policy, had a
meaningful stimulative impact on home sales. Best and Kleven (2017) find that sales
volumes in the U.K. are sensitive to transaction taxes. However, while the statutory
incidence of this tax falls on the buyer, their paper does not attempt to determine
whether the change in volume occurred through a demand or supply response. We
are not aware of any quasi-experimental studies of the effect of the stock of for-sale
listings on sales volumes.

2 Data and Motivating Empirical Patterns

Our data are MLS records provided by CoreLogic. The data come directly from
regional boards of realtors, and cover over 50 percent of property listings in the U.S.
Information on homes listed for sale includes the initial listing date, the withdrawal
date if the home is removed from the MLS without a sale, the contract date if the
home is sold to a buyer, the asking price, and many home characteristics, including
the address. The MLS data have some advantages for our purposes over aggregated
listings data, such as those published by the National Association of Realtors (NAR).
The data on individual listings allow us to observe the actual inflow of new listings
as opposed to inferring it from net changes in total for-sale listings and home sales, a

5Concurrent work by Gabrovski and Ortego-Marti (2021) uses a similar model to estimate the
pool of active buyers in order to estimate the slope of the Beveridge curve in the housing market. To
estimate the pool of active buyers, Gabrovski and Ortego-Marti (2021) use Census data on vacancies
and time-to-sell for new home sales.
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procedure that can lead to mismeasurement caused by withdrawals and homes that
list and sell within the same month. Furthermore, the listing-specific data allows us
to control for characteristics of the house or listing that could affect the sale hazard
(e.g. compositional effects or whether the seller has set an asking price well above or
below prevailing prices).

The data run from 2002-2021. From the full sample, we select a subset of 263
counties due to data limitations for some counties. We describe these limitations as
well as our procedure for selecting counties in the Appendix.

Figure 1 shows trends in sales volume, new listings, for-sale inventory, and the sale
hazard rate over our sample period. The sale hazard rate is calculated as the number
of sales contracted each month divided by the number of homes actively listed at some
point during the month. The annual sale hazard is the average of the monthly sale
hazards, weighted by the number of homes listed for sale each month. Sales volume
rises during the early 2000s, and then falls sharply during the Great Recession. Sales
volume slowly recovers from its fall and only in recent years has the level of sales
volume returned to early 2000s levels.

One might expect sales volume to be closely related to new listings, as homes can
only transact if they are put on the market for sale. Remarkably, however, Figure 1
shows that new listings are only weakly correlated with sales volume over our sample
period. New listings and home sales both rise during the early 2000s, but then diverge
as sales volume declines during the Great Recession and new listings remain elevated.
New listings have remained fairly flat over the last decade even as sales volume has
been on a strong upward trend. These trends suggest that understanding the behavior
of new listings alone is not sufficient for understanding cyclicality in sales volume.

In contrast, the figure shows that sales volume and the sale hazard rate have a
very high correlation. In addition, Figure 2 shows that the sale hazard is also strongly
associated with house price growth. The figure shows the 12-month change in a real
house price index and the “months’ supply”.6 Months’ supply is the ratio between the
number of homes for sale and the number of sales, or the inverse of the monthly sale
hazard. Months’ supply alone can explain about 80 percent of the variation in house
price growth over our sample period. The strong associations of the sale hazard rate
with sales volume and house price growth suggest that understanding the drivers of

6We compute the quality-adjusted house price index from our micro data using a standard
hedonic price regression, as described in the Appendix.
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the sale hazard rate is key for understanding the cyclicality of the housing market.
The importance of the sale hazard rate motivates our model of housing search in
Section 3. Our model focuses on this sale hazard rate and allows us to predict how
the sale hazard rate changes with supply and demand.

2.1 County-level Evidence

County-level statistics provide additional motivating evidence for the limited role
new listings play in explaining short-run variation in sales volume. Table 1 reports
regression results of the 12-month growth in sales volume on the 12-month growth
in new listings and the sale hazard rate. Each variable is measured at the county
level and each regression pools observations across counties. The first column shows
that a one percentage point increase in new listings growth is associated with a 0.35
percentage point increase in sales volume growth, but the R2 is only 0.08. New listings
growth alone explains a tiny fraction of the variation in sales volume growth. The
second column shows that a one percentage point increase in sale hazard growth is
associated with a 0.73 percentage point increase in sales volume growth, and the R2

from this regression is 0.70. Growth in the sale hazard explains almost ten times more
of the variation in sales volume growth than does new listings growth. The remaining
columns show that the results are similar when fixed effects are added for county, or
for county and year-month.

3 Model of Housing Search

To facilitate our decomposition of housing market cyclicality into demand and supply
factors, we use a simple model of housing search. We define supply as the flow of
homes coming onto the for-sale market each period. Similarly, we define demand as
the flow of prospective buyers that enter the market to find a home to purchase. In
our model, supply and demand affect the housing market equilibrium through their
effect on market tightness, θ, which in turn affects the rate at which homes are sold.
Market tightness is the ratio of the stock of prospective buyers, b, relative to the stock
of sellers, s: i.e. θ = b

s
.

The stock of sellers (i.e. the inventory of homes for sale), s, in each month t

evolves as
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st+1 = st − stqst (θt)− st(1− qst (θt))ws + nst+1 (1)

where qs is the rate at which homes are sold, ws is the rate at which unsold
homes are withdrawn from the market, and ns is the inflow of new sellers (i.e. our
fundamental measure of supply). Equation 1 expresses the stock next period as the
stock this period (first term) minus the outflow arising from sales and withdrawals
(middle terms) plus the inflow (final term).

Similarly to the supply of homes for sale, there is a stock of currently-searching
buyers, b, that is replenished by an inflow of new buyers, and depleted as buyers
purchase a home and exit the market, or drop out without purchasing. The stock of
buyers evolves as

bt+1 = bt − btqbt (θt)− bt(1− qbt (θt))wb + nbt+1 (2)

where qb is the rate at which a buyer finds a home to buy, wb is the rate at which
buyers leave the market, and nb is the inflow of new buyers.

Buyers and sellers interact via the search and matching process, which we model
as Cobb-Douglas with constant returns to scale. We discuss this choice of functional
form and robustness to alternative specifications of the search-and-matching function
in the Appendix. Under Cobb-Douglas, the probabilities of buying and selling are:

qst (θt) = θtq
b
t (θt) = Atθt

η (3)

where 0 < η < 1 is the elasticity of the probability of sale with respect to market
tightness and A is a parameter that determines the efficiency of the matching function.
We allow At to vary over time based on factors exogenous to our model, discussed
further in Section 4.1.

Because qs is an increasing function of market tightness, the more sellers there are
in the market, the slower a given house is likely to sell (all else equal). Sellers crowd
each other out and create congestion by competing for the stock of available buyers
- the more houses there are for sale, the less likely any particular house is to receive
an offer. This prediction is consistent with the very strong negative correlation in
the data between the number of sellers on the market, s, and the sale hazard rate, qs

shown in Figure 1.
An alternative to the random search model described above would be to model
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housing search via stock-flow matching. For example, Smith (2020) uses such a stock-
flow model with endogenous seller entry to explain hot and cold housing markets. In
the Appendix, we show robustness of our main results in a stock-flow model where
homes that have just come to market are more efficient searchers than homes that
have been on the for-sale market for some time. Another possible modeling choice
would be directed search. Albrecht, Gautier and Vroman (2016) develop a directed
search model where motivated sellers choose low list prices and relaxed sellers choose
high list prices, leading to shorter and longer time-to-sell, respectively.7 Our model
abstracts from the list price decision, but, as we describe below in Section 4.1, we
incorporate list prices by allowing them to affect matching efficiency. As a result, a
change in the composition of sellers–for example, from relaxed, high list-price sellers
to motivated, low list-price sellers–can affect the sale hazard rate without affecting
our estimate of housing demand.

4 Estimation and Calibration

To impute the relative influence of supply and demand on housing market fluctuations,
we need estimates of nbt and nst . As discussed above, nst is directly observed from our
listings data. We estimate nb using our model structure and the listings data. Our
approach to estimating nb requires estimates of the sale hazard, qs; estimates of the
matching efficiency, A; and calibration of several parameters. We discuss each in
turn.

4.1 Estimating sale hazard, qs, and matching efficiency, A

We estimate sale hazards and matching efficiency using our panel of active listings
at a monthly frequency. Houses enter the panel either in the month they are listed
for sale, or in January 2002 if the listing was already active at that point. They exit
when the house is delisted, and the panel as a whole ends in November 2021. Some
homes are delisted because a sale has occurred, others are delisted because the seller
has decided to no longer market the home for sale. Homes that are delisted from the
market without a sale are treated as censored observations.

Using this sample, we estimate a time period specific sale hazard for each month of

7List prices play a similar role in the quantitative directed search model in Hedlund (2016).
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the panel. This sale hazard is intended to represent that of a generic listing, affected
only by the number of active buyers and sellers, so we need to control for variation
in the composition of listings that could affect sale hazards. To accomplish this, we
estimate an accelerated failure time model where the hazard rate of sale for house i
at time t is parameterized as

hit = exp(δt + βAXA
it ) (4)

where δt denotes a set of month-year fixed effects and XA is a vector of observables
that affect matching efficiency. In XA, we include characteristics of the home, such
as its age and number of bathrooms, as well as the home’s list price relative to an
expected market sales price.8 These listing-specific characteristics could affect sale
hazards for reasons external to the count-based notions of supply and demand we are
concerned with. For example, very old homes may not be suitable matches for many
buyers. If the pool of homes for sale happen to be older than is typical, matching
efficiency for that time period could be low. A high list price relative to market
sales price could proxy for a low seller search intensity or unrealistic expectations,
also lowering matching efficiency. A mismatch between seller expectations and buyer
willingness to pay was especially relevant during the years of the financial crisis, when
homeowners were slow to accept how much the price of their homes had fallen.

The effect of XA on probability of sale is identified using cross-sectional variation,
and the month-year fixed effects (δt) capture residual variation in average sale hazard
over time that is not related toXA. We interpret variation in δt as variation in the sale
hazard rate that is related to variation in market tightness. We use an exponential
hazard function because equation 3 implies that At has a proportional effect on the
sale hazard given the market tightness. In equation 4, the log of the sale hazard is
additively separable in the logs of matching efficiency and market tightness, consistent
with equation (3).

Our estimate of the sale hazard rate is just the average predicted value from
estimating equation 4:

q̂st = 1
Nt

Nt∑
i=1

exp(δ̂t + β̂AXA
it ) (5)

8The expected market sales price is the predicted value from a auxiliary regression of log sales
prices on home characteristics and month-year dummy variables.
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where Nt denotes the number of homes listed on the market in period t.
We estimate At as

Ât = Ā
( q̂st

exp(δ̂t)

)
(6)

which is the estimated sale hazard rate net of the estimated contribution of the
month-year fixed effects. Because the month-year fixed effects can only be estimated
relative to a baseline period, At is identified up to a scale parameter, Ā.

We also estimated a much simpler alternative specification which attributes all
variation over time in the sale hazard to market tightness (i.e. do not allow the sale
hazard to vary with XA). This simpler specification where At is fixed in every period
yields qualitatively similar results to our main specification for At described in this
subsection.

4.2 Calibration of parameters

As is common in the housing literature with random search, we calibrate the elasticity
of the matching function, η, to 0.84 to match the estimate from Genesove and Han
(2012).9 Genesove and Han (2012) estimate η using cross-market regressions and
survey data on buyer time-on-market, seller time-on market, and number of homes
visited by buyers. Subsequent work has validated this estimate using a variety of
different identification strategies. Head, Lloyd-Ellis and Sun (2014) calibrate η in
their housing search model to target the relative volatility of sales growth to income
growth, and arrive at η = 0.86. Recent work by Grindaker et al. (2021) also arrives
at almost an identical estimate to Genesove and Han (2012) using a shift-share shock
to market tightness.

Under our matching function, the addition of an extra buyer or seller to the market
increases sales volume, but not one-for-one, as the addition of an extra buyer (seller)
creates competition or crowd out for other buyers (sellers), lowering the probability
of a match. The calibration of η = 0.84 implies that the addition of an extra buyer to
the market has a relatively low crowd out effect on the probability that other buyers
in the market match with a for-sale home. Adding an extra seller to the market,
however, has a comparatively larger (negative) effect on the probability that other

9For example, Anenberg and Bayer (2020), Guren and McQuade (2020), and Guren (2018) also
calibrate to Genesove and Han (2012).
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sellers in the market match with a buyer.10 Genesove and Han (2012) discuss how
these crowd-out results could be generated by the MLS. The MLS allows buyers to
observe all for-sale listings, but sellers cannot typically observe anything about the
pool of potential buyers or take active steps to match with a particular buyer. As a
result, buyers can more easily and quickly substitute to other listings when multiple
buyers are interested in the same house (i.e. if it sells just before they tour it). Sellers,
in contrast, must passively wait for interested buyers to arrive.

We calibrate Ā = 1.4 using survey data from the NAR on average search time for
buyers in 2019.11 Buyers reported searching for 10 weeks on average, and we calibrate
Ā so that the median buyer simulated in 2019 matches in this time frame.

For our counterfactual simulations, described below in Section 5, we calibrate
ws = 0.061 to match the average monthly withdrawal hazard in our MLS data.12

We do not have any data or external estimates to inform wb, and the dynamics of
the model depend on the net inflow of potential buyers less withdrawals, rather than
the gross inflows and withdrawal outflows individually. Therefore, for simplicity we
normalize wb = ws. Our estimates of the inflow of new buyers, nb, as described below
can therefore be thought of as the fluctuations over time in the net inflow of new
buyers less withdrawals, up to a constant scalar determined by our normalization of
average wb.

4.3 Inferring demand, nb

In this section, we present the equation that expresses nb in terms of variables and
parameters that we can observe or estimate using our data. First, note that by
inverting equation (3), we can express the number of buyers in any period, which is
unobserved in our data, as

bt = st(
qst
At

)
1
η (7)

10To see this, note that ∂M/∂b = Aηθη−1 and ∂M/∂s = A(1 − η)θη where M = sqs denotes
the number of matchings or sales. The relative crowd out effects depend on θ, but except in very
tight markets (i.e. those with very large values of θ), ∂M/∂b > ∂M/∂s for η = 0.84. When market
tightness is high, the addition of an extra seller does relatively more to stimulate sales than when
tightness is low.

11Source: National Assocation of Realtors (2019)
12In those simulations, we hold the withdrawal hazard fixed to ensure we are isolating the variation

in housing market outcomes due exclusively to supply or demand, respectively.
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This equation provides an estimate of bt because st is observed in our data, η is
a parameter that we calibrate, and equations 5 and 6 give estimates of qs and A.13

Second, by plugging equation (3) into equation (2) and rearranging, we can express
nb as

nbt = bt − bt−1 + st−1q
s
t−1 + bt−1(1− st−1q

s
t−1

bt−1
)wb (8)

Given equation (7), the right-hand side of equation (8) depends only on variables
that can be observed or estimated, allowing us to estimate nbt .

5 Partialling Out the Effects of Demand and Sup-
ply

Our next step is to infer how much of the variation in housing market activity is
driven by nst and n̂bt , observed supply and estimated demand, respectively.

Our first counterfactual scenario isolates the effect of supply by holding demand
constant and letting supply follow its observed course. That is, we set the simulated
inflow of potential buyers ñtb equal to the estimated sample mean, nb, in every period.
The simulated inflow of new listings, ñts, is set equal to the observed nts. We initialize
the market using the observed values of the state variables in January 2002, and
simulate forward following equations 1, 2, and 3 of our model. Our second scenario
isolates the effect of demand by allowing demand to follow its estimated course, while
holding supply constant. We set the simulated inflow of buyers equal to its estimated
monthly values, ñtb = n̂tb. The simulated inflow of new listings is instead set to equal
its sample mean (ñts = n̄s). Again, the market is initialized at January 2002 levels
and simulated forward. In both scenarios, At, which captures changes in observable
characteristics of listings that affect the sale hazard, is held fixed at its sample mean.

It is worth noting that many home sellers are builders, investors, or households
leaving the owner-occupied housing market. Conceptually, supply from these sellers

13The estimate of bt is essentially a residual and so we would attribute any unobserved shocks
that affect matching efficiency to variation in bt. As described in Section 4.1, however, observable
characteristics of listings that we can control for in XA do very little to explain the time-series
variation in sale hazards. We therefore believe that variation in sale hazards, conditional on the
number of listings and their observed characteristics, is largely due to variation in demand and that
our estimates of bt are a good proxy for the number of actively searching buyers.
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can vary while demand remains fixed as in our counterfactual simulations. Similarly,
many buyers (such as first time home buyers) are not simultaneously trying to sell
another home, so demand from these buyers can vary while supply remains fixed.
However, many households are attempting to move from one owner-occupied home
to another, and so enter the market as both buyers and sellers. For this reason, fixing
the entirety of either the supply or demand side constant while letting the other
vary fully may not be a realistic economic counterfactual for the housing market.
Still, these joint buyer-sellers make choices about their dual-search problem, including
whether to enter the market first as a buyer, first as a seller, or as a buyer and seller
simultaneously. Our simulations help us understand which side of the market their
potential entry in matters more.

5.1 Sales Volume

Figure 3 displays the monthly volume of home sales recorded in our MLS data, along-
side counterfactual values from the constant-demand and constant-supply simulations
described above. The simulated volumes with constant demand and time-varying sup-
ply are nearly flat and only weakly correlated with observed sales. The implication
is that variation in supply has essentially no explanatory power over sales volumes.

In contrast, the simulated volumes with constant supply but time-varying demand
match the realized sales data very well. There is some small deviation between the
series during the Great Recession period, when sellers were particularly likely to set
asking prices well above what buyers were willing to pay, but variation in demand
explains the overwhelming majority of variation in sales.

5.1.1 Model Choice and Crowd-Out

An important parameter in our model is the elasticity of the matching function,
calibrated to η = 0.84. The closer to 1 is η, the more crowd-out each listing creates.
That is, a marginal new listing is more likely to poach a buyer from a different listing,
rather than create a new sale. Marginal potential buyers, on the other hand, create
little crowd out and so overall sales volume should be quite responsive to variation in
the number of buyers. Variation in supply could thus be more important for smaller
values of η.

As discussed above, the empirical literature without exception finds evidence for
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a high value of η. To gauge the sensitivity of our results to lower values of η, however,
we show results for η = 0.16. This alternative calibration is symmetric to the baseline
calibration, except buyers, and not sellers, create more crowd out. Results from these
alternative simulations are shown in Figure 4. The reduced supply-side crowd out
is clearly visible in the greater variation in sales generated by the constant-demand,
varying-supply simulations. However, this simulation still makes a poor fit to the
actual data. A regression of the sales volume data on simulated sales has an R2 of
essentially zero. The varying-demand, constant-supply simulations, on the hand, still
do much better in matching the data. While the fit is not as good as in our preferred
specification, a regression of sales volume data on these simulated sales has an R2 of
0.78.

The impotence of supply (and hence dominance of demand) follows from the data
and is essentially a requirement of the observation that total for-sale listings and sales
volumes are not well correlated. As can be seen in Figure 1, over the time period
we study the correlation is actually substantially negative. If the supply of homes
for sale were the major determinant of sales volumes, total listings and sales should
generally move together. Under a calibration with more buyer than seller crowd out,
the logic of the search model implies an even greater pro-cyclicality of demand to
match the observed negative correlation between listings and sales than it does in
our preferred calibration. External evidence that crowd-out is actually greater on the
supply than on the demand side (motivating a high value of η) only reinforces the
relative importance of demand over supply.

5.2 Months’ Supply and House Prices

With the various counterfactual series of b and s simulated as described above, we can
also simulate counterfactual paths of the months’ supply of homes for sale, shown in
Figure 5. Compared to sales volumes, months’ supply is more responsive to variation
in new listings. While variation in new listings has little effect on the numerator of
the months’ supply ratio (sales volume), it is an important determinant of the denom-
inator (total active listings). The figure shows that the vary-supply counterfactual
rises and falls between 2002 and 2012, which is consistent with the general pattern
in the data over this time period. However, the counterfactual simulation shows an
increase in months’ supply from 2012 onward whereas in the data, months’ supply
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declined over this time period. Overall, the R2 from a regression of the true months’
supply on the vary-supply simulated months’ supply is 0.26.

As with the sales volume counterfactuals, we find that the vary-demand simulation
explains a larger share of the variation. The vary-demand simulation follows the
true path of months’ supply closely, though it cannot account for the full rise in
months’ supply during the Great Recession. The elevated level of new listings over
this time period contributed significantly to the rise in months’ supply. The R2 from
a regression of the months’ supply on the vary-demand simulation is 0.8, three times
as large as the vary-supply R2.

Months’ supply of homes for sale is a figure of particular interest because of its
close connection with house prices. As shown in Figure 2, there is a very tight
negative correlation between months’ supply and house price growth, a relationship
sometimes referred to as the housing Phillips curve. The R2 of this relationship
is about 0.80. Caplin and Leahy (2011) and Guren (2018) discuss how a negative
relationship between the level of months’ supply and changes in house prices is
difficult to explain in a model with full information and rationality. While our housing
search model does not take a stand on the specific house price formation process, one
way to motivate this tight connection is with a model in which sellers have only
limited information about the demand for their homes, but can observe the recent
experience of other for-sale listings. A tight market, as evidenced by the rapid sale of
recent listings, informs sellers that they can raise prices. Slower sales, indicating that
the market is not so tight, would inform them that they may need to lower prices to
make a timely sale. Price adjustments to rebalance the number of prospective buyers
and sellers willing to transact at current price levels (i.e. market tightness) cause the
negative correlation between price growth and months’ supply. We describe such a
model in the Appendix. Similar intuition for the housing Phillips curve can be found
in the models of Carrillo, de Wit and Larson (2015) and Guren (2018).14

14In Carrillo, de Wit and Larson (2015), sellers are slow to realize when there has been a shock
to the number of buyers searching on the market, and that their bargaining power has consequently
changed. Market tightness improves the seller’s relative bargaining position and hence increases
sales prices. As individuals learn about the new level of market tightness, they slowly adjust their
positions. Market tightness thus predicts price growth over multiple future periods. Guren (2018)
models some fraction of sellers as using a backward-looking heuristic for house prices. This be-
havior generates momentum in house prices and corresponding inventory volatility, exacerbated by
other, forward-looking households strategically timing their market entry to take advantage of the
predictability of price growth.
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Taking the reduced-form relationship in Figure 2 as given and feeding counterfac-
tual months’ supply from Figure 5 into that relationship, we find that price fluctu-
ations in the short term mostly depend on demand. Variation in supply also has a
meaningful influence on months’ supply and hence price growth, though its influence
is much smaller than that of demand.15

5.3 Explaining Cross-Sectional Variation in Housing Mar-
kets

The analysis shown thus far has been exploiting and explaining time-series variation in
the U.S. housing market in the aggregate. Housing market dynamics differ widely by
locality within the country, however. In the Appendix we show that, across counties,
variation in sales growth can also be well explained by variation in demand but not
at all by variation in supply. Similarly to the results from the aggregate time series,
this inference does not rely on a calibration in which there is more crowd out on the
supply side than on the demand side (although it is reinforced by such a calibration).
As in the aggregate results, supply plays a larger role in explaining cross-sectional
variation in months’ supply than in explaining sales volumes.

6 Contrast with a Reduced Form Approach

An alternative, more reduced-form approach to partialling out the relative importance
of supply and demand factors is to simulate various counterfactuals, varying or holding
constant the terms in the accounting identity described in equation 1. This is the
method used by Ngai and Sheedy (2020) (NS). In this section we replicate their
motivating empirics, including a key element of their data construction. As described
in Section 2, the aggregate NAR data NS use doesn’t allow for measuring the number

15This inference about the determinants of price growth assumes that the observed relationship
between market tightness and prices is causal, or mechanically linked as in the model described
in the Appendix. However, it is possible that the effect of a shock to market tightness on price
growth would not be as strong as the tight correlation apparent in Figure 2 might suggest. Prices
and months’ supply could both be influenced independently by some third factor. Lacking a clean
source of quasi-experimental variation in demand and supply, we cannot be certain that the true
effect is as strong as the observed correlation. Nonetheless, given the clear theoretical connection
and that tight correlation, it seems very likely that market tightness (and, consequently, demand)
is the primary driver of short-run house price growth.
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of new listings distinct from the number of withdrawals. We show why the reduced-
form approach, along with the conflation of new listings and withdrawals, leads to
opposite inferences about the importance of the supply side in determining sales
volumes.

NS perform counterfactual simulations similar to those described in our Section
5, holding some determinants of sales fixed while allowing others to follow their ob-
served path. The principal conceptual difference relative to our approach is that,
rather than modelling the matching process and inferring the number of active buy-
ers, they treat the sale hazard (qs, in equation 1) as a model primitive. Depending on
the counterfactual being considered, this qs is fixed as a constant or set following its
observed historical path. The inflow of new listings, ns, is treated similarly as in our
approach. However, instead of using actual new listings and holding the withdrawal
hazard constant as we do, given their aggregate data they must infer new listings as
the monthly difference in for-sale inventories, net of sales. This construction is actu-
ally net new listings because it does not distinguish between an increase (decrease)
in new listings and a decrease (increase) in withdrawals.

We follow their basic approach, once again initializing the market at the values
observed in January 2002. We use equation 1 to simulate two counterfactual paths of
active listings and sales. In the first, the sale hazard qs is fixed at its sample mean,
while the inflow of new listings ns follows its observed path. To replicate their data
construction, in this section we measure ns as monthly new listings minus the monthly
number of withdrawals and otherwise set the withdrawal hazard, ws, equal to zero.
In the second simulation, qs is allowed to vary as it does in the data, while ns is fixed
at its sample mean. Simulated sales volumes under the two reduced-form scenarios,
along with actual sales, are presented in Figure 6. In contrast to the simulations
using our full model (shown in Figure 3), the reduced-form counterfactuals suggest
the inflow of new listings has a powerful effect on the number of sales, and can explain
much of the time-series variation. Unlike our simulated inflow of new buyers, variation
in the sale hazard by itself does a poorer job explaining the number of sales. While
there are some differences due to time period and additional data construction issues,
these reduced-form findings qualitatively match those of NS.

Why does fixing the sale hazard as in NS lead to such different conclusions from
the method we used in Sections 3 through 5? Recall from our model that the sale
hazard, qs, is a function of supply as well as demand: the more houses there are
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for sale, the more actively searching buyers are needed to maintain a particular sale
hazard. This modeling of the sale hazard is consistent with the negative empirical
correlation between for-sale inventory and the sale hazard shown in Figure 1. Given
the substantial observed time variation in the supply of new for-sale listings, a sub-
stantial amount of variation in the number of active buyers would be necessary to
have kept the sale hazard fixed at a constant. Implicitly, the NS simulations in which
listings vary but sale hazard is fixed involve considerable variation in demand.

This can be seen by taking the counterfactual sales data from the reduced-form
simulations with varying supply and fixed sale hazard, and backing out the implied
time series of demand (bt) using the model described in Section 3. We apply the
method described in Section 4.3 to this simulated data, and present the imputed
level of counterfactual demand in Figure 7. For comparison, we show the inferred
time series of bt based on our estimates from Section 4. As can be seen, the two series
are quite similar. Given the actual inflow of new listings, a fixed sales hazard implies
a time series of demand that follows the true historical demand series closely, with
a small delay. The variation in sales volumes in NS’s “vary supply” counterfactual
mostly comes from variation in demand, even though the sales hazard is fixed.

Including withdrawals in the “vary-supply” counterfactual contributes to the tight
fit between the simulated and true data. As can be seen in Figure 1, for example,
during the years 2006-2008 new listings were still coming on the market at an elevated
pace while sales volumes and sale hazard rates were falling and the housing boom
turned to bust. Yet, the reduced-form “vary-supply” counterfactual sales volume
takes a downturn at almost the same time as the true data do (see Figure 6). This
is possible because as shown in Appendix Figure 10, withdrawal rates rose as the
sale hazard fell, growing about 40 percent from 2005 to their peak in 2008. The
surge in withdrawals (and an unchanging sale hazard) depletes the counterfactual
stock of for-sale listings faster than even the elevated level of new listings could
replenish it, causing sales volumes in this simulation to fall as well. The combination
of the reduced-form approach (effectively allowing zero supply-side crowd-out) and
this conflation of withdrawals and new listings allows the “vary-supply” simulations
in this section and NS to fit the true sales data so well.16

16In addition to their headline counterfactuals, NS do attempt simulations that partial out the
effects of withdrawals. However, lacking observations of individual listings, they are forced to assume
an elasticity of withdrawals relative to sales hazard. This exercise does weaken the power of listings
to explain sales in their paper, but does not eliminate it.
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The results of this section highlight the importance of taking market tightness,
and its implications for the matching process, into consideration when evaluating the
relative roles of demand and supply. The reduced-form results would suggest the
supply of new listings, rather than demand for homes, is the most important factor
in determining sales volumes. Our full set of results suggest that the opposite is true.

7 Implications

7.1 COVID-19 Housing Boom

Figure 2 shows that during the COVID-19 pandemic, the housing market tightened
considerably. After a brief dip at the onset of the pandemic, the sale hazard rate
surged to record levels and house price growth also moved up to record highs. In this
section, we use our model to decompose the tightening of the housing market during
the pandemic into supply or demand factors.

A priori, the recent observed tightening in the housing market could be due to
reduced supply or increased demand, or both. On the demand side, lower interest
rates and widespread telework may have induced more buyers into the market. On
the supply side, homeowners could be reluctant to list their home for sale during a
pandemic, which could have reduced the for-sale supply. Generous mortgage forbear-
ance programs and the foreclosure moratorium may also have reduced supply. Indeed,
new listings plummeted at the onset of the pandemic.

Figure 8 shows counterfactual months supply using our model under (i) fixed
demand and true supply and (ii) true demand and fixed supply. When demand or
supply is fixed, we set it at average 2019 (pre-pandemic) levels. At the very beginning
of the pandemic, the vary-supply simulation drops below the true months’ supply
while the vary-demand simulation rises above the true months’ supply, showing that
some of the initial decrease in months’ supply is driven by a decrease in new listings.
As the pandemic progresses, however, the figure shows that stronger demand overtakes
lower supply as the main factor behind the observed decrease in months’ supply. By
the middle of 2021, the contribution of reduced supply has disappeared and higher
demand can explain essentially all of the decrease in months’ supply since March
2020. We conclude that, outside of a brief shock at the beginning of the pandemic,
reduction of supply was a minor factor relative to increased demand in explaining the
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tightening of housing markets.
We can also use our model to estimate how much additional supply would be

needed to keep house prices on their pre-pandemic trend, given the observed increase
in demand. Figure 9 shows counterfactual house prices in which demand (nbt) is set
at its actual estimated levels, but supply (nst) is set at some multiplier, x, of average
2019 (pre-pandemic) levels. We find that a value of x = 1.3 or greater is necessary
to bring the counterfactual house price back to its pre-pandemic trend by November
2021. This means that a 30% increase in the monthly number of homes coming on
to the market would have been necessary to keep up with the pandemic-era surge in
demand. This is a very large increase in supply. Since new construction typically
accounts for about 15% of supply, our estimates imply that new construction would
have had to increase by roughly 300% to absorb the pandemic-era surge in demand.
One implication of this result is that policies targeted at increasing supply, for example
construction subsidies or zoning reforms, would have done little to cool the pandemic
house price boom in the short-run.

7.2 Interest Rate Elasticity

This section compares the sensitivity of housing demand and supply to changes in in-
terest rates, which is an important channel through which policy makers can influence
the housing market.

We estimate the regression:

yt − yt−12 = α0 + α1(frmt − frmt−12) + εt (9)

where y is the housing market variable of interest in month t and frm is the average
monthly 30-year fixed mortgage rate in percentage points as reported in the Freddie
Mac primary mortgage market survey. We estimate the regressions using our monthly
sample between January 2002-November 2021.

Table 2 reports estimates of α1 for different outcome variables. The first column
shows that higher mortgage rates have a strong negative effect on buyer demand,
nbt . A negative effect is expected because higher mortgage rates increase the cost of
owning a home, which should decrease demand all else equal. A one percentage point
increase in the mortgage rate is associated with about 9,000 fewer buyers entering
the market in our sample counties. Relative to the sample average value of buyer
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demand, this is a decrease of about 10.4 percent, or a semi-elasticity of 10.4.
Column 2 shows that home sales are also negatively associated with mortgage

rates, but the magnitude of the effect is much smaller. The semi-elasticity of home
sales to mortgage rates is estimated to be 6, about one-half the estimate of the de-
mand semi-elasticity. Why are home sales much less mortgage rate sensitive than our
estimate of buyer demand? One explanation is search frictions. Because it takes time
for buyers to transact, home sales today reflect demand from a mix of periods in the
past. This mixture effectively smooths the response of home sales to demand shocks,
leading to attenuated estimates. A second reason is that, as column 3 shows, there
is a small, positive association between mortgage rates and new listings. Higher sup-
ply results in higher sales volume all else equal, so the negative relationship between
demand and mortgage rates is somewhat offset by the positive relationship between
supply and mortgage rates. An implication of these results is that housing demand is
much more responsive to mortgage rates than simple regressions based on observables
imply.

One potential issue is that changes in mortgage rates could be correlated with
unobservables that also influence demand, supply, and sales. To address this endo-
geneity concern, the final three columns of the table show results where we instrument
for the change in mortgage rates using a monthly series of monetary policy surprises
estimated in Bu, Rogers and Wu (2021). Contractionary (expansionary) monetary
policy tends to raise (lower) mortgage rates, and Bu, Rogers and Wu (2021) develop
an estimation procedure that extracts any component of monetary policy that is un-
related to economic fundamentals.17 For demand and sales, the table shows that
the IV estimates of the semi-elasticity are larger than the OLS estimates. Larger IV
estimates are expected because increases in mortgage rates are typically associated
with an improved economic outlook, which likely increases buyer demand and biases
the OLS estimate towards zero. Consistent with the OLS estimates, buyer demand is
more rate sensitive than home sales in the IV estimates. The semi-elasticity is 21 for
demand and 15 for sales volume, though the demand estimate is somewhat imprecise
and is only marginally significant.

17Bu, Rogers and Wu (2021) also show that their monetary policy surprise measure contains no
significant central bank information effect. The measure is available from the authors’ website for
our full sample period.
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8 Conclusion

We use a housing search model to decompose fluctuations in home sales and prices
into supply or demand factors. Simulations of the estimated model show that housing
demand drives short-run fluctuations in home sales and prices.

For longer-run changes in the housing market, supply may play a much larger role.
For example, new supply today also increases supply in the future as today’s buyer
eventually sells her new home. Our simulations do not account for such a response as
we are focused on the short run, but the accumulation of new supply (including new
construction) likely explains more of the variation in sales volume over long horizons.
Similarly, long-run levels of house prices may not be as closely connected to market
tightness as the short-run price growth we consider in this paper. Understanding the
relative importance of supply and demand and other factors for longer-run changes
in the housing market remains a topic for future research.
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Figure 1: Annual sales volume, new listings, inventory, and sale hazard rate
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Notes: All series are indexed to 2002 values. The sale hazard rate is calculated as
the number of sales contracted each month divided by the number of homes actively
listed for sale at some point in the month. The annual sale hazard is the average
of the monthly sale hazards, weighted by the number of homes listed for sale each
month.
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Figure 2: Months supply and house price growth
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is adjusted for inflation using the consumer price index excluding shelter.
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Figure 3: Sales Volumes, Observed and Counterfactual
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Notes: “True” is the actual sales volume in the data. “Vary supply” is the counter-
factual sales volume according to our model when demand is held fixed at its sample
mean, but supply varies as in the data. “Vary demand” is the counterfactual sales
volume according to our model when supply is held fixed at its sample mean, but
demand varies as in our estimates.
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Figure 4: Sales Volumes, Alternative Crowd-Out
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Notes: Shows simulated sales volume for an alternative calibration of the elasticity of
the matching function: η = 0.16. “True” is the actual sales volume in the data. “Vary
supply” is the counterfactual sales volume according to this model when demand is
held fixed at its sample mean, but supply varies as in the data. “Vary demand” is
the counterfactual sales volume according to this model when supply is held fixed at
its sample mean, but demand varies as in our estimates.
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Figure 5: Months’ Supply, Observed and Counterfactual
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Notes: Months’ supply is equal to the inverse of the monthly sale hazard rate. “True”
is the actual months supply in the data. “Vary supply” is the counterfactual months
supply according to our model when demand is held fixed at its sample mean, but
supply varies as in the data. “Vary demand” is the counterfactual months supply
according to our model when supply is held fixed at its sample mean, but demand
varies as in our estimates.
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Figure 6: Sales Volume, Reduced Form
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Notes: “True” is the actual sales volume in the data. “Vary supply” is the counterfac-
tual sales volume when the sale hazard is held fixed at its sample mean, but supply
varies as in the data. “Vary sale hazard” is the counterfactual sales volume when
supply is held fixed at its sample mean, but the sale hazard varies as in the data.
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Figure 7: Estimated Number of Active Buyers
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Note: “From Observed Sales” shows the estimated number of active buyers implied
by our model and the observed time series of listings and sales. “From Counterfactual
Sales (Fixed Sale Hazard)” shows the number of active buyers implied by our model
using a counterfactual sales volume series generated when the sale hazard is held fixed
at its sample mean, but supply varies as in the data.
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Figure 8: Months’ Supply during COVID-19, observed and counterfactual
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Notes: Months’ supply is equal to the inverse of the monthly sale hazard rate. “True”
is the actual months supply in the data. “Vary supply” is the counterfactual months’
supply according to our model when demand is held fixed at pre-pandemic (2019)
levels, but supply varies as in the data. “Vary demand” is the counterfactual months’
supply according to our model when supply is held fixed at pre-pandemic (2019)
levels, but demand varies as in the data.

34

Electronic copy available at: https://ssrn.com/abstract=4158723



Figure 9: Real house price during COVID-19, observed and counterfactual
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Notes: Shows log real house price under counterfactual supply. “+X” is a counter-
factual where supply is set at a multiplier, X, of pre-pandemic (2019) supply levels
for each month from March 2020 onward.
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Table 1: County-level Growth in Sales, New Listings and Sale Hazard
Sales Growth Sales Growth Sales Growth Sales Growth Sales Growth Sales Growth

New Listings Growth 0.346∗∗∗ 0.330∗∗∗ 0.244∗∗∗

(0.00496) (0.00499) (0.00511)

Sale Hazard Growth 0.732∗∗∗ 0.731∗∗∗ 0.835∗∗∗

(0.00209) (0.00208) (0.00209)

County FE X X X X
Month-Year FE X X
R-squared 0.0827 0.695 0.0955 0.704 0.192 0.788
N 54026 54026 54026 54026 54026 54026
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: OLS regression results of the 12-month growth in sales volume on the 12-month
growth in new listings and the sale hazard rate. Each variable is measured at the
county-month level and each regression pools observations across counties.
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Table 2: Mortgage Rate Elasticity
OLS IV

Demand Supply Sales Demand Supply Sales

30-yr Fixed Mortgage Rate -8856.7∗∗∗ 2837.7∗ -4292.2∗∗∗ -18609.4∗ 6531.6 -10442.6∗∗

(2185.4) (1599.9) (1450.0) (10674.3) (9069.8) (4698.9)

Observations 226 226 226 226 226 226
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: All variables are in 12-month changes. Demand is housing demand, as implied
by the housing search model. Supply is new listings and Sales is sales volume. The
latter three columns show results when we instrument for the change in mortgage
rates with a monthly series of monetary policy surprises estimated in Bu, Rogers and
Wu (2021). Newey-West standard errors with optimal lag-selection algorithm are
shown.
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A Sample restrictions

There are 95 million listings in our MLS data over our sample period and these listings
are associated with 3,067 unique counties. We drop counties from our estimation
sample for one of two reasons. First, not all counties in our sample record the contract
date if a sale occurs. The contract date measures when a buyer and seller agree on a
sales price, and is a better measure of when a property sells than the sale closing date.
The sale closing date, which is always recorded in our data for sales and is part of
the public record, measures when property ownership is transferred from the seller to
the buyer. The lag between sale agreement and sale closing varies across sales largely
due to idiosyncratic factors, such as the buyer move date preference or the processing
time for the mortgage lender, and not due to housing market tightness. We therefore
drop counties for which the sale contract date is missing for at least two percent of
sales in any year.18

Second, the coverage of the MLS data increases over time for certain geographic
areas. We drop counties for which there appears to be large changes in coverage
during our sample period. We drop counties where (i) the annual change in sales for
any year is greater than 75% (either positive or negative) of the previous year’s sales
or (ii) the ratio of total sales between 2014 and 2019 is over 2.5 times as large as total
sales between 2000 and 2005. We also drop counties where (iii) the number of sales
over the full sample period is less than 400 or (iv) in any year, the number of sales is
less than 10.

After our sample restrictions, we are left with 263 counties and 38 million listings.

B Search-and-Matching Function

Our baseline parameterization of the search and matching function is Cobb-Douglas
with constant returns to scale. Although this matching function does not have a
clear micro-foundation, its advantage is that it has a free parameter, η, that dictates

18For the small number of remaining sales with missing sales contract date, we set the sales
contract date equal to the sales closing date minus 35 days, which is the average delay between sale
agreement and sale closing in our data.
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the elasticity of the probability of sale with respect to market tightness. This is an
advantage because as we discuss in Section 4, there are a few consistent and credible
external estimates of this parameter that we can calibrate to. We can also test
robustness to alternative values of the parameter. In the next three subsections, we
discuss alternatives to our baseline, constant returns to scale Cobb-Douglas matching
function.

B.1 Urn-ball matching function

An alternative search-and-matching function to consider is the urn-ball matching
function, where

qs(θ) = θqb(θ) = 1− exp(−Aθ)

This matching function has only one instead of two free parameters as in Cobb-
Douglas, but its advantage is that it has a micro-foundation (see Petrongolo and
Pissarides (2001)). Each period, sellers post their vacancies, and each buyer randomly
visits a seller. Buyers do not coordinate on their visits. One interpretation of A is that
it measures the fraction of buyers who are suitable matches for a randomly selected
home for sale. A transaction occurs when a seller is matched with at least one suitable
buyer. For a large number of sellers, 1 − exp(−Aθ) is a good approximation to the
sale hazard rate. Figures 11 and 12 show our results are little changed when we use
the urn-ball matching function instead of Cobb-Douglas.

B.2 Stock-flow model

In this section, we consider an extension of our housing search model where new
listings are potentially more efficient searchers than old listings. This model can
account for the fact that in the data, the sale hazard rate for new listings is much
higher than the sale hazard rate for old listings. The model builds on Andrews et al.
(2013). The notation is the same as in the model presented in the main text with
one exception. We now use st to denote the number of old listings on the market
in period t. We continue to denote the number of new listings by ns. New listings
become old listings if they do not sell (and are not withdrawn from the market) in
the first period after listing. In this model, we modify the matching function to be
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Mt = Atb
η
t (st + atn

s
t)1−η (10)

where M denotes the number of transactions and at denotes the search efficiency
of new listings relative to old listings. Since we include the aggregate efficiency term
At, we can normalize the search efficiency on old listings to one. Assuming that
matches are divided between new listings and old listings with weights equal to st
and atn

s
t respectively, we can express the sale probability for new listings and old

listings as

qsold = qsnew
at

= At
( bt
st + atnst

)η
(11)

The probability of buying is simply

qb = Mt

bt
= At

( bt
st + atnst

)η−1
(12)

The stock of old sellers evolves as

st+1 = st − stqsold − st(1− qsold)wsold + nst(1− qsnew)(1− wsnew) (13)

where wsnew and wsold are the withdrawal rates for new and old sellers, respectively.
The stock of old sellers next period equals the stock this period minus the outflow
(old sellers who sell or withdraw) plus the inflow (new sellers who do not sell and do
not withdraw).

The stock of buyers evolves as:

bt+1 = bt − btqb − bt(1− qb)wb + nbt+1 (14)

We estimate the stock-flow model using the same approach described in Section
4. Sale and withdrawal hazards are estimated separately for new and old listings.
The parameters that are new to this model, at, can simply be estimated by taking
the ratio of the estimated sale hazards for new and old listings, as shown in equation
11.

As in the baseline model, we calibrate η = 0.84 and we calibrate Ā to match
survey data from the NAR on average search time for buyers in 2019. We calibrate
wsnew = 0.052 and wsold = 0.113 to match the average monthly withdrawal hazard for
new and old listings in our MLS data, respectively. We set wb = 0.08, which is the
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average seller withdrawal hazard across both new and old listings.
Consistent with our results from the baseline model, Figure 13 shows that demand

explains essentially all of the variation in sales volume in the stock-flow search model.
The relative role of demand and supply is also comparable to our baseline model for
months supply, as shown in Figure 14.

B.3 Increasing returns to scale

It is common in the housing search literature to model the matching function as
constant returns to scale. An exception is Ngai and Tenreyro (2014), who use a
matching model with increasing returns to scale (IRS) to explain seasonality in the
housing market. In their model, there is a “thick market effect”: when there are more
homes available for sale, a buyer is more likely to find a match. Market tightness
plays no role in their model and the probability of a match is increasing in the stock
of houses available for sale (s using our model notation).

While thick market effects may exist, they are unlikely to be a first-order consid-
eration for the matching technology because as we discussed earlier, Figure 1 shows
a strong negative correlation between the stock of houses available for sale and sales
volume.19 As a robustness, we consider simulations for the IRS matching technology:

M = Abηsα (15)

for η = 0.84, which is our baseline calibration of the exponent for the stock of
buyers, and α = 0.30, which is an arbitrary value that is greater than 0.16 so that
the matching function exhibits IRS. Results with IRS are similar to our main results.

C Construction of house price index and expected
house price

To construct a house price index, we estimate the hedonic regression

pit = δt + βXit+ε (16)

19Looking specifically at seasonality, Figure 20 shows that there is a positive correlation between
seasonality in inventory and sales, but it is far from one.
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where pit is the log transaction price of house i that goes under contract in month-
year t, δt is a set of month-year dummy variables for the contract date, and X is a
vector of house characteristics including: home age, its square, and its cube; number of
bedrooms and its square; number of bathrooms; the ratio of bedrooms to bathrooms; a
dummy for new construction; a dummy for property type; and zipcode fixed effects.20

We drop transactions associated with sale prices below $10k or above $10 million.
The estimates of the month-year dummy variables are used as the quality-adjusted
nominal house price index. To get the real house price index, we deflate using the
CPI-less-shelter index from the BLS.

The expected log house price for home i at time t is simply the predicted value
from equation 16, p̂it. The expected house price can be computed for any home listed
for sale, not just homes that ultimately transact. pLi − p̂it is the list price premium,
which is included in the variables that affect the sale hazard in equation 5, XA. Our
MLS data only record the initial list price and the final list price associated with each
listing, and not the time of any list price changes. We set pLi equal to the original log
list price associated with listing i. For the stock-flow model described in Appendix
Section B, for new listings, we use the original log list price as pLi , and for old listings,
we use the final log list price as pLi .

D County-level findings

Using location data from individual listings, we construct a county-level panel of
listings and sales and use these data to back out the implied number of buyers in
each county and month. We then simulate counterfactual time series of sales and
inventory in each county, varying only either demand or supply as described in Section
5. To determine how well supply and demand individually explain housing market
dynamics in the cross section, we compare counterfactual growth in sales and months’
supply to the true data over the years 2003-2005, when the U.S. housing market was
experiencing a boom with a large amount of geographical variation.

County level sales growth is measured as the percentage difference in total annual
sales between 2003 and 2005. The counterfactual values of this sales growth under the
vary-demand and vary-supply simulations are shown in a scatter plot against the true

20We do not use the home’s square footage or lot size because these characteristics are frequently
missing in our data.
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values of sales growth on the horizontal axis in Figure 17. The vary-demand simulated
observations are tightly clustered around the 45 degree line, suggesting cross-sectional
variation in demand does a very good job explaining differences across counties in sales
growth during the mid-2000’s housing boom. The vary-supply simulated observations
show no particular correlation with true sales growth, however. Variation in supply
cannot explain different counties’ experiences over this time period.

Just as with the aggregate time series, we may be concerned that this result is the
consequence of a modeling choice, rather than an implication of the underlying data.
We therefore perform a similar exercise as in Section 5.1.1, and rerun the simulations
calibrating η = 0.16. This calibration causes more crowd out on the demand side
than the supply side, potentially allowing supply to play greater role in driving sales
volumes.

Results from counterfactual simulations under the alternative calibration are shown
in Figure 18. A low value of η weakens but does not eliminate the fit of the vary-
demand counterfactual observations to the true data, reducing the correlation between
the simulated and true data to 0.43. It also allows for supply to drive more variation
in simulated sales volumes, evident from the greater vertical spread in the vary-supply
counterfactual observations relative to Figure 17. However, the fit of the vary-supply
simulations to the true data is not any improved—the correlation is essentially zero.
Just as we found from the aggregate time series, supply’s inability to explain cross-
sectional variation in sales growth is driven by the data rather, not by our choice of
calibration.

In Figure 19 we show counterfactual simulations of months’ supply relative to the
true data. We find that supply does a better job explaining months’ supply than
it does sales volumes. Across counties, the vary-demand and vary-supply simulated
observations have a similar correlation to the true data.

E House prices and market tightness

In this section, we describe a theoretical justification for the tight empirical rela-
tionship we find between market tightness and house price growth. For simplicity of
exposition, we only consider demand-side shocks.

Time is discrete. Let there be a measure 1 of Sellers, who each live a single
period. They list a home for sale and choose a take-it-or-leave-it asking price, P. For
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simplicity, assume P can take only one of two values: High (P = H) or Low (P = L),
where H > L. A Seller’s utility is the expected proceeds from a sale, i.e. the asking
price times the probability a sale occurs.

Buyers search the market for homes listed for sale. Like Sellers, let Buyers live
for a single period. There are two types of Buyers: High Demand and Low Demand.
Assume there is a measure 1 of both types of Buyers. High Demand Buyers always
have a higher willingness to pay to buy a home than Low Demand Buyers.

Buyers’ willingness to pay is determined by their type and by the state of the
world, which can be Good or Bad. In the Good state, High Demand Buyers are
willing to pay H and Low Demand Buyers are willing to pay L for a home. In the
Bad state, High Demand Buyers are willing to pay L and Low Demand Buyers are
not willing to pay anything. Each period, the state of the world stays the same as
the last period with probability S, and changes (from Bad to Good, or from Good to
Bad) with probability 1− S.

Sellers cannot observe the current state of the world—they do not know precisely
how in-demand their home is. However, they can observe prices and sale activity
from the previous period, and, inferring what the state of the world was at that time,
form an expectation about its current state. Using this information, sellers set an
asking price to maximize expected utility. Buyers then observe their own willingness
to pay and choose to either:

1. Search among the high-priced listings (if any are on offer);

2. Search among the low-price listings (if any are on offer); or,

3. Abstain from the market.

Within each price tier P, the sale hazard is a function q of market tightness, θP , the
ratio of Buyers searching in price P to sellers asking for P. Following the matching
function of Section 3, assume this sale hazard takes the form:

q(θP ) = AθηP (17)

Each match results in a transaction. The utility from these transactions is realized,
and the next period begins with a new crop of Buyers and Sellers.

Under certain parameterizations, the following strategy is a pooling equilibrium
for every seller: set P = H if the previous period state was Good, and set P = L
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if the previous period state was Bad. In this equilibrium, all sellers choose the same
price in a given period and so the directed search model collapses to random search,
as there is only one active price tier for Buyers to search in at any time.

To see that all Sellers following this strategy is an equilibrium, consider first the
utility a Seller derives from this strategy when the previous state was Good. The
Seller sets P = H, as do all the other sellers.

• With probability S, the current state is Good. High Demand Buyers, willing to
pay H, search in this price tier as there are no homes priced at L for sale. With
all homes priced above their willingness to pay, Low Demand Buyers abstain
from the market. θH,Good = 1, so q(θH,Good) = A.

• With probability 1− S, the current state is Bad. No Buyers are willing to pay
H, so everyone abstains. θH,Bad = 0, so q(θH,Bad) = 0 and no sales occur.

The Seller’s expected utility from following this strategy is the product of the proba-
bility of each state times the expected utility in that state, summed over both states,
or

U = Sq(θH,Good)H + (1− S)q(θH,Bad)H = SAH (18)

Now consider a Seller deviating from this strategy, and setting P = L if the
previous state was good. They could increase their sale probability, depending on
Buyer strategy, but the expected utility cannot rise above L. Therefore, every Seller
setting P = H when the previous state was Good is an equilibrium if:

L < SAH (19)

Next, consider the utility a Seller derives from following the strategy when the
previous state was Bad. The Seller sets P = L, as do all the other sellers.

• With probability S,the current state is Bad. High Demand Buyers, willing to
pay L, search in this price tier where all the homes for sale are. With all homes
priced above their willingness to pay, Low Demand Buyers abstain from the
market. θL,Bad = 1, so q(θL,Bad) = A.

• With probability 1−S, the current state is Good. Both High Demand and Low
Demand Buyers are willing to pay L, so everyone searches in the low price tier.
θL,Good = 2, so q(θL,Good) = A2η.
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The Seller’s expected utility from following this strategy is

U = Sq(θL,Bad)L+ (1− S)q(θL,Good)L = SAL+ (1− S)A2ηL (20)

Now consider a Seller deviating from this strategy and setting P = H when the
previous state was Bad. They could increase their reward if the current state was
Good, depending on Buyer strategy, but their reward in the Bad state is certain to
be zero (as no Buyer is willing to pay H in the bad state). Their expected utility
cannot rise above (1− S)H. Therefore, every seller setting P = L when the previous
state was Bad is an equilibrium if:

(1− S)H < SAL+ (1− S)A2ηL (21)

For AH > L, the inequalities 19 and 21 can be satisfied, and this pooling equi-
librium can arise, as long as S is sufficiently close to 1. That is, when recent housing
market demand is sufficiently informative about the current expected level of demand,
Sellers will price high when demand was high and low when demand was low.

The state of the world in the previous period (t−1) can be inferred from observing
its market tightness, θt−1, and prices, Pt−1. Under the equilibrium strategy, there are
four possible sets of observed values:

1. θt−1 = 0 and Pt−1 = H. Sellers had set prices high but the world ended up in
the Bad state, so no Buyers entered. As the previous state was Bad, Sellers will
set Pt = L. Price growth from t− 1 to t is therefore negative, L−H.

2. θt−1 = 1 and Pt−1 = L. Sellers had set prices low and the world ended up in
the Bad state, so only High Demand Buyers entered. As the previous state was
Bad, Sellers will set Pt = L. Price growth from t−1 to t is therefore zero, L−L.

3. θt−1 = 1 and Pt−1 = H. Sellers had set prices high and the world ended up in
the Good state, so only High Demand Buyers entered. As the previous state
was Good, Sellers will set Pt = H. Price growth from t−1 to t is therefore zero,
H −H.

4. θt−1 = 2 and Pt−1 = L. Sellers had set prices low but the world ended up in
the Good state, so both High Demand and Low Demand Buyers entered. As
the previous state was Good, Sellers set Pt = H. Price growth from t− 1 to t is
therefore positive, H − L.
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When market tightness is low (θt−1 = 0) price growth is low (L−H). When market
tightness is moderate (θt−1 = 1) price growth is moderate (0). When market tightness
is high (θt−1 = 2) price growth is high (H − L). Therefore, price growth is perfectly
correlated with, and a function of, market tightness. Intuitively, very high or low
market tightness represent an imbalance between supply and demand at a given price
point. Subsequent Sellers observe this imbalance, and adjust asking prices up or
down to bring demand into alignment with supply. This adjustment does not happen
instantaneously because Sellers do not observe shocks to demand directly: they must
first observe the market tighten or loosen and then react.
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Figure 10: Withdrawal Hazard
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Notes: Shows the average monthly probability, by year, that a listing is withdrawn
from the market without sale.
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Figure 11: Sales Volumes, Observed and Counterfactual from Urn-ball Model
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Figure 12: Months’ Supply, Observed and Counterfactual from Urn-ball Model
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Figure 13: Sales Volumes, Observed and Counterfactual from Stock-Flow Model
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Figure 14: Months’ Supply, Observed and Counterfactual from Stock-Flow Model
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Figure 15: Sales Volumes, Observed and Counterfactual from IRS Model
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Figure 16: Months’ Supply, Observed and Counterfactual from IRS Model
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Figure 17: Sales Volumes Counterfactuals across Counties
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Notes: Shows simulated sales volume growth from 2003 to 2005, plotted against
actual sales volume growth over this period. Observations represent simulations for
individual counties. “Vary supply” is the counterfactual sales volume according to
our model when demand is held fixed at its sample mean, but supply varies as in
the data. “Vary demand” is the counterfactual sales volume according to our model
when supply is held fixed at its sample mean, but demand varies as in our estimates.
“True” represents the 45 degree line that a perfect simulation of the true underlying
data would lie along.
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Figure 18: Sales Volumes Counterfactuals across Counties, Alternative Crowd-Out
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Notes: Shows simulated sales volume growth from 2003 to 2005 for an alternative
calibration of the elasticity of the matching function: η = 0.16, plotted against ac-
tual sales volume growth over this period. Observations represent simulations for
individual counties. “Vary supply” is the counterfactual sales volume according to
this model when demand is held fixed at its sample mean, but supply varies as in
the data. “Vary demand” is the counterfactual sales volume according to this model
when supply is held fixed at its sample mean, but demand varies as in our estimates.
“True” represents the 45 degree line that a perfect simulation of the true underlying
data would lie along.
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Figure 19: Months’ Supply Counterfactuals across Counties
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Notes: Shows simulated growth in the months’ supply of homes for sale from 2003 to
2005, plotted against actual months’ supply growth over this period. Observations
represent simulations for individual counties. “Vary supply” is the counterfactual
sales volume according to our model when demand is held fixed at its sample mean,
but supply varies as in the data. “Vary demand” is the counterfactual sales volume ac-
cording to our model when supply is held fixed at its sample mean, but demand varies
as in our estimates. “True” represents the 45 degree line that a perfect simulation of
the true underlying data would lie along.
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Figure 20: Seasonality in sales, new listings, inventory, and sale hazard rate
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